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1. Introduction 
 

Throughout the theoretical and applied importance, a mixed problem for partial 
differential equations refer to one of the urgent problems of mathematics and 
mathematical physics. Some problems of electrodynamics, problems of 
underground hydromechanics, nonstationary problems for mathematical physics 
equations are reduced to such problems. Symbolic calculus used by engineer-
electrician O. Hevyside was one of the convenient, but mathematically not 
reasonable tools. 

In the beginning of the XIX century, Fourier suggested the method of 
separation of variables for integration of some linear partial differential equations 
under the given boundary and initial conditions. Application of the Fourier method 
to the solution of mixed problems with separated variables reduces to the problem  
of expansion of an arbitrary function from some class in eigen functions 
corresponding to the spectral problem. 

In 1827, for solving mixed problems with constant coefficients, Cauchy [2] 
suggested the residue method the essence of which is in  representation of an  
"arbitrary"  function in the form of integral residue. One of the methods for solving 
mixed problems for partial differential equations is the method of integral 
transformations that was successfully used by Laplace , A.L. Cauchy [2],  M.L. 
Rasulov [10] and others. 
In his researches M.L. Rasulov used the integral transformation 
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and for )(λϕ  assumed that )(λϕ is an analytic function in the domain 

,,arg,:
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tending to zero as ∞→λ uniformly with respect to λarg  (see the conditions 
of theorem 1.1 on page 152 of the paper [10]). 

Note that if for δλ R∈ satisfying the inequality,  ,0)Re( 2 >−λ  M.L. 

Rasulov determines )(λϕ  by formula (1), then this integral, generally speaking, 

diverges. But if =Ω∈λ






 ≤≥

4
πλλ arg,R  Rasulov would take )(λϕ  in 

the form of (1) and in domain  Ω\δR  determined the function )(λϕ by analytic 
continuation, then the conditions of existence of such a continuation should be 
clarified additionally so that this assumption be fulfilled. Furthermore , M.L. 

Rasulov, except one special function 1( )t
t

ϕ =  (from p.245, [10]) does not show 

the class of functions ( )tϕ for which )(λϕ satisfies this assumption. 

In [10], [11] it is assumed that under suitable numberings )(xjθ ( jθ  are 
the roots of the characteristic equation of spectral problem),  the following 
conditions are fulfilled 

[ ] [ ] [ ] ,],,[,)(Re...)(Re)(Re ωλβαλθλθλθ ∈∈≤≤≤ xxxx n21  (2) 
where ω is some infinite part of λ  plane, wherein we look for asymptotic 
behavior of the system of fundamental particular solutions of a homogeneous 
equation corresponding to spectral problem.  In applications, feasibility of 
condition (2) reduces to the fact that: 

A) arguments )(xjθ and arguments of their differences are independent of 

],[ βα∈x  (for example, see: restraint 30 on page 23, [10]), that in our opinion is 
a more rigid restraint. 

Note that when solving mixed problems [4] we are restricted in 
consideration of a parametric problem not on the whole infinite part of λ  - plane 

but only in some part ( in the sector δπλ +≤
4

arg  ) of λ -plane and because 

of that we get rid of rigid constraint A). 
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There exists a wide range of mixed problems of theoretical and practical 
importance that  are not solved by the known Fourier, G.D. Birkhoff [1], Ya. D. 
Tamarkin [11], M.A. Naimark [9 ], M.L. Rasulov [10] methods. In the case of 
irregular boundary conditions, expansion in eigen and associated functions has a 
number of specific features. 

The authors resecrch shows that when solving these problems it is not 
obligatory to use Brikhoff- Tamarkin-Naimark-Rasulov's expansion formulas. 

In this paper we suggest the method of finite integral transformation that 
admits to find the solution of irregular mixed problems under more general 
boundary conditions and weaker constraints on the problem data. 

 
 1.1. Finite integral transformation 
Let  ( )tf  be a complex, ( )tω a real function of the real argument 

TTtt ,( ≤≤0 is some positive number) and [ ]( ).,0,, TLff ∈⋅ωω  

Definition.  We call the function ( ),,~ tf λ±  determined by the formula  
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where  λ  is a complex number, the image of the function ( )tf  
We have: 

Theorem E.  Let ( ) ( ]( ) [ ]( ),,, TLTCt 00 ∈ω  ( ) 0>∫ ηηω
τ

d
t

for   

  ( )tfTt ,≤<≤τ0  be bounded and continuous (except denumerable number 
of points at which it may have discontinuity of first kind) with respect to} 

[ ].,0 Tt∈  

 Then for all ( ),0 Ttt <<  the function ( ) ( )τ
τ

ftf
t 0

lim0
±→

≡±
 
is 

represented by its own image in the form  

( )
( )

( ) ( )
0

10 exp , ,
2 1

t

L

f t d f t dλ ω τ τ λ λ
π θ ±

 
± =  

− −  
∫ ∫                      (4) 

   

 

where  L  is an in finite smooth line in λ  -plane whose a rather distant part 

coincides with continuation  of the rays  ( )arg ;
2

a πλ θ + = ± + 
 

 θ,a  

( )2/0 πθ <<  are some constants, and in (4) the integral with respect to L   is 
understood in the sense of principal value. 
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Assume  ( ) ( )tftfi =  for t 1+<< ii ttt ,  ( ) ( ),0+= iii tftf
( ) ( ),011 −= ++ iii tftf   where   ( )Ttttt mi =<<<= ...0 10   are some 

points. 
Corollary.  If  ( ) [ ]( ) ( ) 0,,0 >∈ tTCt ωω   for    [ ]Tt ,0∈   (t)>0  and the 

functions ( )tfi  are absolutely continuous with respect to 

[ ] ( )1,...,0,, 1 −=∈ + mittt ii  (m is a natural number), then (4) holds for 
0=θ as well. 

1.2. Finite integral transformation method(for parabolic equations) 
Here for a wide range of readers, on the following irregular model problem 1 
for parabolic equations we state the finite integral transformation method. 
Model problem 1. To find the classic solution ),( txuu =   of the equation 

∞≤≤<<<+
∂
∂

=
∂
∂ TtxtxF

x
ua

t
u 0102

2
2 ,),(                          (5) 

satisfying the irregular conditions 

,)(),()(),( TttdxtxuxKt
t
u

x
≤<==

∂
∂

∫
=

0
1

0
21

0
ϕϕ                      (6) 

and the initial condition 
      ),,(),(),( 100 ∈=

=
xxftxu t

                                             (7) 

where   fF ,,, 21 ϕϕ   are the known functions,  a-const 
10. Let equation (1) be parabolic in I.G. Petrovsky sense, i.e. let 

,||,|arg|,arg 0
4

1 >−≤= − aaeaa a θπ  

where θ  is some number satisfying the inequality 

.
4

0 πθ <<                                                                   (8)   

20. Let  the functions  )(),(),(),,( xftttxF 21 ϕϕ be continuous for  ,10 ≤≤ x  
.Tt ≤≤0  

Stage 1. Obtaining operation problem 
For 0>t applying the finite integral transformation 

  
2

0

( , ) ( ) ,
t

t e dλ τφ λ φ τ τ−= ∫

                                          (9) 

(λ is a complex parameter) to (5)-(6) and using (7) and then performing on the 

image ),,(~ λtxu operations corresponding to the given operations on ),,( txu  

197 
 



PROCEEDINGS OF IAM, V.7, N.2, 2018 
 

we get the following operation problem (10),(11): 
2

2 2 2
2 ( , , ) exp( ) ( , ) ( ) ( , , ), 0 1,a u x t t u x t f x F x t x

x
λ λ λ λ

 ∂
− = − − − < < ∂ 





     (10) 

));,(~)(()(),,(~ λϕ
λλ

λ λ tftvetxu t
x 1220 011 2

++−= −
=

 

,),(~),,(~)(∫ =
1

0
2 λϕλ tdxtxuxK                                               (11) 

where 

∫ −=
t

dxuetxu
0

2
,),(),,(~ ττλ τλ  ∫ −=

t
dxFetxF

0

2
,),(),,(~ ττλ τλ  

,),()( 0=≡ xtxutv ∫ −=
t

kk det
0

2
.)(),(~ ττϕλϕ τλ                                                 (12) 

Remark 1. One our distinction from the authors engaged in such problems 
is that unlike the operation problem constructed by us in the present case the right 
hand side of the operation problem contains the sought-for function ),( txu as 
well. 

Stage 2. Studying the parametric problem. 
For solving the operation problem (10)-(11) at first we study the parametric 

problem (13)-(14) corresponding to it 
  2 2'' ( ), (0,1)a y y x xλ ψ− = ∈                                          (13) 

,/)( 101 γ=≡ =xyyU ,),()()( 2

1

0
2 γλ =≡ ∫ dxxyxKyU                                  (14) 

where   2110 γγψ ,]),,([)( Cx ∈   are arbitrary numbers. 
In [4] we have shown that when studying mixed problems for parabolic 

systems of order 2p it suffices to consider the domain of change of parameters  λ  
in the form 

.,arg,:








>+≤≥= 0
4

δδπλλλδ p
RR  

Consequently, here and in the sequel, we will assume that 

,arg,:








+≤≥=∈ δπλλλλ δ p
RR

4
 

where R is a rather large positive number (see remark 5), 
 )( θδδ <<0                                                (15) 

is an arbitrarily fixed number (see remarks 4 and 7). 
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We take the system of fundamental particular solutions of a homogeneous equation 
corresponding to (13) in the form 

],,[,exp),( 101 ∈





−= xx

a
xy λλ ,)(exp),( 






 −−= x

a
xy 12

λλ                            (16) 

the fundamental solution of equation (13) we take in the form 

  .exp),,( 





 −−−= ξλ

π
λξ x

aa
xP

2
1

                                 (17) 

Note that here fundamental solution ),,( λξxP  and the systems of fundamental 

particular solution  ),,(),,( λλ xyxy 21  are chosen so that for 

∞→∈ λλ δ ,R  they are decreasing functions with respect to λ . 
Remark 2. It is known that the Green functions of the problem (13)-(14) 

are independent on the choice of the fundamental solution ),,( λξxP  and the 

system of fundamental particular solutions ),(),,( λλ xyxy 21  . Here their such 

choice for δλ R∈ frees us from the operations performed in [10, 11], over the 
determinants contained in the expression of the Green function. 
The denominator of the Green function of the problem (13)-(14) will be 

  .
)()(
)()(

)(
2212

2111

yUyU
yUyU

=∆ λ                                                 (18) 

Expanding the determinant (18), we have 
,),(...)( δλλλαλαλαλ RO SMSM

SM
M

M
M

M ∈++++=∆ −−−
−

−
−

11
1      (19) 

where M  is the highest possible degree with respect to   S,λ   is some 
nonnegative integer,   να  are some numbers. 

Incidentally we note that we can take the number S contained in (19) rather 
large (i.e. for  δλ R∈  for )(λ∆ we can get more exact asymptotics) if the 
functions contained in the left hand side of the parametric problem (13), (14) are 
rather smooth. 

Remark 3. In [4] for the equations with variable coefficients and "general" 
,   boundary conditions sufficient conditions imposed on the coefficients of the 
parametric problem that provide to obtain asymptotics )(λ∆ to the required 

accuracy S for δλ R∈ are given. 
Definition 1. We say that boundary conditions of parametric problem (13)- 

(14) are well-imposed if at least one of the numbers 
   1, , ..., ( (19))M M M S fromα α α− −                                       (20) 

is nonzero. 
From this definition we immediately get: 
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-If the boundary conditions of the parametric problem are regular in the 
sense of Birkhoff -Tamarkin - Naimark-Rasulov, then they are well-posed by our 
definition. 

But the inverse statement is not true 
30 . Let irregular conditions (14) be well-posed and in the sequence (20) the 

first nonzero number be qα , where )( Zqq ∈  is some integer. 
We chose the number R so large that 

  δλλαλ Rforq
q ∈≥∆

2
1)(                                           (21) 

Now show the sufficiency of the condition providing well-posedness of irregular 
conditions (14). 

40. Let ]),,([)( 10nCxK ∈   ,)()( 011 ≠−nK  01 =)()( jK    for 
2−≤ nj  , where n is  some natural number. 

Taking into account (16) in (18), we get 
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Using the constraint 40 , integrating the following integral by parts, we 
have 
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  ∫
                                                                                     (23) 

Taking into account 10 we have 

  asee aa ,
λελ −−

≤ δλ R∈ ,                                                 (24) 

where .)sin( 0>−= δθε  
Remark 4. In (15) selection of the number  δ  satisfying the inequality 

θδ < provides positivity of the number ε contained in (24). 
Note that 

,lim),,[, 01 =∞∈≤ −

∞→

− ξ

ε

ξ ξξξ ece p
p

p                              (25) 

where p is any real number, pc   is some positive constant. 
Taking into account (23) (24), (25)  in (22) , we get 

     ,)()()( )( 





+−=∆ +

−+
1

11 1111
n

nnn
n OKa

λλ
λ   δλ R∈                             (26) 
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that shows well -posedness of irregular conditions (14). 
Thus we established 
Lemma 1. Let constaints 10, 40 be fulfilled. Then for  δλ R∈   for the 

equation (13) the irregular conditions (14) are well-posed. 
Now we choose the number R so large that 

    asKa nn
n )()( )( 1

2
11 1−≥∆

λ
λ   δλ R∈ .                      (27) 

Remark 5. The numbers R is chosen from the following two  conditions: 
-in the domain δR  to find to the required accuracy the asymptotic 

representation of the system of fundamental particular solutions of homogeneous 
equation corresponding to the equations of the parametric problem (in the present 
model example we did not need it) 

-in the domain δR  for )(λ∆  -denominator of the Green function of the 
parametric problem to get the lower estimate of type (21) ( in the presen case of 
type (27)). 

From (27) it follows that 0≠∆ )(λ  for δλ R∈ , this inequality implies 
the validity of the following  classic theorem. 

Theorem 1. Let the constraints' 10, 40   be fulfilled,  ]),,([)( 10Cx ∈ψ  
1γ  and 2γ be arbitrary numbers, then for δλ R∈  the parametric problem 

(13,14) 
-has a unique solution, 
-this solution is represented by the formula [4] 

      ),(,)(),,(),,,(),( 10
1

0
21 ∈+= ∫ xdxGxxy ξξψλξγγλδλ                        (28) 

1( , , ) ( , , ) ( , , )G x P x G xξ λ ξ λ ξ λ= +  

The function ),,,( 21 γγλδ x with respect to 1γ  and 2γ  is linear , i.e. 
 ).,,,(),,,(),,( 21212211 ββλδγγλδβγβγλδ xqxqqx +=++                  (29) 

Taking into account (24) in (16) for δλ R∈  we get the validity of the following 
inequalities 

  ),,(],,[),,(),( 2110 =∈≤ kxxxyk λρλ                            (30) 
where 

.)(expexp),( 







−−+








−= x

a
x

a
x 1λελελρ  

Stage 3.Inversion formulas. 
At this stage we get some inversion formulas  connected with: 
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),,,( 21 γγλδ x  is the solution of homogeneous  inversion formulas  equation 
corresponding to (13), satisfying inhomogeneous irregular conditions (14), 
- ),,( λξxG  is the Green function of the parametric problem (13), (14). 

Let   L   be an infinite open  smooth line in the domain δR  whose rather 

distant part coincides with the continuation of the rays .arg 





 +±= δπλ

4
 In the 

sequel, let   ...,<<< 21 RRR   and  ∞=
∞→ mm

Rlim  mL be a part of L  

remaining interior to the circle of radius mR ;  and mC be a part of a circle  of 

radius  mR ;        ( centered at the origin of  coordinates of  λ - plane ) remaining 

in the domain δR . 
We have 

Lemma 2. Let )(λg  be an analytic function with  respect to δλ R∈  

and 
Sconstg λλ ≤)(  for Rδλ ∈  where )(, Zss ∈ is some integer. Then for 

,10 << x we have the following formula of inversion to zero 

( ) ( , ) 0, 1,2k
L

g y x d kλ λ λ = =∫  

where   ky   is from (16). Here and in the sequel, the integral with respect to L  is 
understood in the sense of principal value. 

Lemma 3. Under constraints 10  and  40  for any  numbers 1γ  , 2γ  and 

for any integer )(, Zss ∈  we have the  following formula  of inversion to zero  

      1 2( , , , ) 0, 0 1s

L

x d xλ δ λ γ γ λ = < <∫      .                       (31) 

 Lemma 4. Under constraints  10  and  40   if  )(xψ  is a piece-wise  continuous 

function in [0,1] then for any integer )(, Zss ∈  it holds the following formula of 
inversion  to zero 

        
1

1
0

( , , ) ( ) 0, 0 1s

L

d G x d xλ λ ξ λ ψ ξ ξ = < <∫ ∫    .                    (32) 

According to [4] we have the following 
Lemma 5. Under constraints  10, if  )(xψ  the segment [0,1] is Holder 

continuous with the exponent ),( 10 ≤< qq  then for 10 << x  we have the 
following inversion formulas: 
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0, 0
( , )

2 1 ( ), 1,
2

s

L

as s
x d

x as s
λ ψ λ λ π δ ψ

=
=   − + − =   

∫ 

 

where  ),,(,)(),,(),(~ λξξξψλξλψ xPdxPx ∫=
1

0

 is from (78) 

The following theorem on inversion formula follows from lemmas 4 and 5. 
Theorem 2. Under constraints 10  and 40  , if  )(xψ  on the  segment [0,1] 

is Holder continuous with the exponent ),( 10 ≤< qq  then for 10 << x  we 
have the following inversion formulas 

      
1

0

0, 0
( , , ) ( )

2 1 ( ), 1,
2

s

L

as s
d G x d

x as s
λ λ ξ λ ψ ξ ξ π δ ψ

=
=   − + − =   

∫ ∫      (33) 

where ),,( λξxG  is the Green function of irregular parametric problem (13) 
(14) . 

 Stage 4. The solution of the mixed problem. 
Using theorem 1 for δλ R∈  according  to the formula (28) from the 

operation problem (10) (11) we have 

 +





 ++−= − ),(~)),,(~)(()(,,),,(~ λϕλϕ

λλ
λδλ λ ttftvextxu t

2122 011 2  

[ ]∫ ≤≤∈−−+ −
1

0
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2
.],,[,),,(~)(),(),,( TtxdtFftuexG t ξλξξξλξ λ      

Thus, we established the following 
Theorem 3.  Let constraints  10,  20 and 40 be fulfilled. Then , if  irregular 

mixed problem (5)-(7) has a classic solution, then: 
-it is unique, 
-this solution is represented by analytic formula  

21 1( , ) (0) ( , ,1, 0)
1

t

L

u x t f e xλ δ λ
λπ

= +
− ∫  
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2
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− ∫∫ − txddFedxG
t
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Remark 6. From  derivation of  formula (34) it follows that under 
constraints  10,  20 and 40  if the function  ),( txu   defined by  formula (34) is not 
the solution of problem (5)-(7),  then this problem has no classic solution. 

Remark 7.  The positivity of the number  )( 0>δδ    admits us to  get 
the inequality 

       foreCe t
T

t
22 λωλ −≤ , 0 ,L t Tλ ∈ ≤ ≤                                (35) 

where δω 20 sin=<  . 
Inequality (35) admits  to take for 0>t    the operation of differentiation 

with respect to t and with respect to x under the integral sign  with respect to L .  
Imposing definite restrictions on the function  )(),(),(),,( xftttxF 21 ϕϕ    (see 

[4] it is easy to see that the function ),( txu  determined by the formula (35) in fact 
is the classic solution of irregular mixed problem (5)-(7). 
Model problem 2. 
To find the solution of the equation 
 

  002

2

>∞∈
∂
∂

=
∂
∂ tx

x
u

t
u ),,(,                                              (36) 

under  the boundary conditions 

  ∞→∈≤>=
∂
∂

=

xasTtxMCtxutt
t
u

TT
x

],,[),exp(),(),( 00
0

ϕ         (37) 

   TT MC  are some constants, in the initial condition 
  ),,(),(),( ∞∈Φ= 00 xxxu                                         (38) 

where  00 ≥Φ≥ xxtt ),(,)(ϕ     are some continuous 

functions, and constx ≤Φ )(   for ).,[ ∞∈ 0x  
This model problem is among the problems considered by M.L. Rasulov 

[10].  According to  formula (3.5.11), p.152, [10] by Rasulov , the solution of the 
problem  (36)-(38) is 

   2

2
0

1( , ) ( ) ( , , ) ( ) ,
1

x
t

L

eu x t e G x d d
λ

λλ φ λ ξ λ ξ ξ λ
λπ

∞− 
= + Φ 

−  
∫ ∫                   (39) 

where 

   [ ] ∫
∞

−+−−− =−=
0

2

2
1 .)()(~,),,( dtteeexG txx ϕλϕ
λ

λξ λξλξλ                              (40) 

Now, using the finite integral transformation method stated in  model problem 1, 
for solving the problem (36)-(38) we get the following expressions 
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2 2

2 2
0 0

1 (0)( , ) ( ) ( , , ) ( ) ,
1

tx
t x

L

eu x t e e d e G x d d
λ

λ λ τ λλ φ τ τ ξ λ ξ ξ λ
λ λπ

∞−
− − Φ

= + + Φ 
−  
∫ ∫ ∫                 (41) 

where G is from (40). 
Thus, the solution of problem (36)-(38)  is represented by different 

formulas (39) and (41). Comparing (39) and (41) we see that the second summand 
in braces (41), (39) do not exist, further  in (39) in  the first summand the integral   

2

0

( )
t

e dλ τϕ τ τ−∫  is replaced by  
2

0

( ) .e dλ τϕ τ τ
∞

−∫  This replacement, in our opinion, is 

not successful. 
In the problem (36)-(38)  we assume 

 
    .)(,)( 10 ≡Φ≡ xtϕ                                                    (42) 

Then from (39) we have 

  ∫ −=
)/(

,)exp(),(
tx

dtxu
2

0

22 ξξ
π

                                        (43) 

and from (41) we get 
  1≡),( txu                                                           (44) 

On the other hand, by theorem 12, p 152 [10], the solution of the problem (36)-
(38), (42)  is unique, on the other hand, for the solution ),( txu  of problem (36)-
(38), (42) M.L. Rasulov obtains the expression (43), though in fact the classic 
solution of the problem (36)-(38), (42)  is 1≡),( txu  from (44). 
1.Statement of the problem 

Find then classic solution of the equation  
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∂  

satisfying the integro-differential "boundary" conditions  

( ) {∑ ∑
= =

== ++≡
1

0

1

0
10

n j
x

n
x

j
t

i
jnx

n
x

j
t

i
jnxti txuDDtxuDDuDDV ),(),(, )()( βα  

2,1,0),(),()(
1

0

)( =<<=




+ ∫ iTttdxtxuDDx i
n
x

j
t

i
jn

ϕγ               (46) 

 the initial condition  
,10),(),( 10 <<=

=
xxftxu t                                             

(47) 
 and the finite condition  
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,10),(),( 2 <<=
=

xxftxu Tt    
                                     (48) 

 where ),( txuu ≡  is the sought-for continuous classic solution; )(xv  is the 

sought-for continuous control, )(),(),(),,(),(),(),( )( xftxtxfxcxbxa ii
i

jn ϕγ
,  are known functions ; ),0( >TT )()( , i

jn
i

jn βα   are known numbers. 
10. Let equations (45) be parabolic in I.G. Petrovsky sense, i.e. let 

],1,0[,)(Re 0 ∈≥ xδxa  where )0( 00 >δδ  is some number. 

20. Let ( ) ( ) ( )]1,0[)(,]1,0[)(,]1,0[)( 12 mmm CxcCxbCxa ∈∈∈ ++  . 

30. Let ( ) .1,0;1,0;2,1,]1,0[)( ===∈ njiCγ qi
jn  

In conditions  20 and 30 , ),0( ≥mm  ),0( ≥qq    are some integers (see 
remark 2.2). 

40. Let  
( ) ( ) ( ).],0[]1,0[),(),2,1(,],0[)(,]1,0[)( 1 TCtxfiTCtCxf ii ×∈=∈∈ ϕ  

From constraint 10 it follows that  

],1,0[,4
2

)(arg4
2

∈−≤≤+− xδπxaδπ
                                         (49) 

 where 





 <<

8
0 πδδ  is some positive number. 

Definition 1.1. It is said that the function ),( txuu ≡ is a classic solution 
of problem  (45) -(48) if 

1a : the function ),( txu  is continuous for .0,10 Ttx ≤≤≤≤  

2a : the function ),( txu  for Ttx <<≤≤ 0,10  has a continuous 
derivative of the form 

2

2 ),(,),(
x

txu
x

txu
∂

∂
∂

∂  ; 

3a : the function ),( txu   for Ttx <<<< 0,10   has continuous 

derivatives of the form 
t

txu
∂

∂ ),(  ;  

4a : if ,0)(
10 ≠iα  then ( )),0(],0[),( TαC

t
txu

×∈
∂

∂  where )10( << αα   is 

some number;  

if ,0)(
10 ≠iβ  then ( );),0(]1,1[),( TαC

t
txu

×−∈
∂

∂  
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if ,0)(
11 ≠iα  then  ( ) ( );),0[],0[),(,),0(],0[),(2

TC
x

txuTC
tx
txu

×∈
∂

∂
×∈

∂∂
∂ αα  

if ,0)(
11 ≠iβ  then   

        ( ) ( );),0[]1,1[),(,),0(]1,1[),(2

TC
x

txuTC
tx
txu

×−∈
∂

∂
×−∈

∂∂
∂ αα  

if )()(
10 xγ i  is not identically equal to zero,then ( ),),0(]1,0[),( TC

t
txu

×∈
∂

∂  

if )()(
11 xγ i  is not identically equal to zero, then ( ),),0(]1,0[),(2

TC
tx
txu

×∈
∂∂

∂  

( );),0[]1,0[),( TC
x

txu
×∈

∂
∂  

5a : the function ),( txu  satisfies equalities (45)-(48) in the ordinary 
sense. 
 
2.Parametric problem. 

 
For solving problem (45)-(48) as first we solve the following parametric 

problem  

),1,0(),(, 2 ∈=






 −





 xxψyλ

dx
dxZ                          (50) 

 ,2,1,,2 ==





 iγy

dx
dλV ii                                           (51)   

where ( ) iγCxψ ,]1,0[)( ∈  are some numbers, λ  -is a complex parameter. 
Here and is the sequel, unless otherwise stipulated, we assume 

,
4

arg,:






 +≤≥≡∈ δπλRλλRλ δ  

where δ   is from (49), R  is a rather large positive number. 
Denote by )2,1(),( =ixθi   the roots of the characteristical equation     

[1, 9,10,11], covresponding to (50), i.e. let  

.
2

)(arg1exp)()()( 2
1

12 





 −−−==−

xaxaxθxθ  

According to [1,9,10,11], [4], under constraints 20 and ,0)( ≠xa
]1,0[∈x   there exist the functions  

( ) ],1,0[,0)(,,0,]1,0[)( 0
2 ∈≠=∈ xxgmsCxg iis  

that for the functions  
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,)(1...)(1)()(exp),( 10
0





 +++







≡ ∫ xg

λ
xg

λ
xgξdξθλλxy immii

x

iim
 

it holds  

2,1],1,0[,)()(exp),(,
0

2 =∈







=







 −







∫ ix
λ

xEξdξθλλxyλ
dx
dxZ m

im
x

iim
 

)0( ≠λλ  is any (complex) number, ( ) )(]1,0[ xEC im∋   is some function. 

In [4] in domain δR  the fundamental solution ),,( λξxP  of equation 
(50) is constructed in the form  

,),,(),,(),,(),,(
1

0
00 ηλξηληλξλξ dhxPxPxP ∫+=                                        (52) 

 ( ),,( λξxh -is a sought -for kernel), where  
and using fundamental solution, under constraints 10 and 20 in [4] it is proved that a 
homogeneous equation corresponding to (50) has the system of fundamental 
particular solutions ),,( λxyi )2,1( =i  that together with first order derivatives 
are represented by the asymptotic formulas  

),,(),(),( )(
111 λxEλxy

dx
dλxy

dx
d s

mms

s

s

s

+=  

;1,0),,(),()(exp),( )(
22

1

0
22 =+








−= ∫ sxExy

dx
ddxy

dx
d s

mms

s

s

s

λλξξθλλ   (53) 

where ),()( λxE s
im  are some continuous functions with respect to ]1,0[∈x  and 

analytic with respect to δRλ∈  and the following estimations hold:  

),exp(),()(
1 xλε

λ
CλxE sm

s
m −≤ −

 

)),1(exp(),()(
2 xλε

λ
CλxE sm

s
m −−≤ −

 ),exp(),(1 xλεCλxy −≤   

)).1(exp(),(2 xλεCλxy −−≤                                                                         (54) 
Here and in the sequel, by C  and ε  we denote different positive numbers 

(concrese values of which are not important) independent of ]1,0[∈x  and

δRλ∈ Remark 2.1. In the classic papers [9, 10,11], the methods used by them 
compelled them to know asymptotics of the system of fundamental particular 
solutions of a homogeneous equation with respect to λ   along the direction of λ  - 
plane and because of that, on the roots of characteristical equation they imposed the 
constraints: 
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(A): the arguments )(xθi   and arguments of their differences )(xθi

)(xθ j−  are independent of x . 
For equation (50) constraints (A) reduce to the assumption 
(B): )()( xPαxa = , where constxP −> α,0)( for ]1,0[∈x . 
Unlike classic papers [9, 11], in the present paper (and in [4]) constraints 

(A) are not imposed on the roots of the characteristical equation and therefore 
fulfilment of constraint (B) is not supposed. 

Expanding the determinant (determinator of the Green function) 
we have  

),()()( λEλQλ +=∆                                                               (55)  
where  

,1...)( 66
5

5
6

6 −−+++= KKQ
λ

αλαλαλ ,1)( 5 




= −KOE
λ

λ                        (56) 

)0( ≥KK is some integer. 
Note that the number K contained in (56), may be taken rather large (i.e. 

for )(λ∆   one can obtain sufficiently exact asymptotic representations) if the 
numbers m  (from 20, and     q ( from 30 ) are rather large.  

Definition 2.1. It is said that boundary conditions (46)(or (51)) well-
defined right if at least one the numbers ,,...,, 656 Kααα − ( from (56)) is non-zero.  

 If boundary conditions of the spectral problem are regular in Brikhoff - 
Tamarkin - Naimark - Rasulov’s sense, then they are well-defined in the sense of 
our definition. But the inverse statement is not true. 

Show this on the following examples  
),1,0(),(" 2 ∈=− xxψyλy                                                                                 (57) 

   ,0)1(2)0( =− yy     0)1('2)0(')0( =++ yyy                                       (58) 
If we take system of fundamental particular solutiouns of a homogeneous equation 
corresponding to (57), in the form ),exp(),(),exp(),( 21 xλλxyxλλxy =−=   
then the denomination of the Green functions of problem (57)-(58) will be 

.262)( λλ eλeλ −−−=∆  
Hence it is seen that boundary conditions (58) for equation (57) are regular in the 
sense of Brikhoff, Tamarkin, Naimak, Rasulov. It we take the system of 
fundamental particular solutions of homogeneous equations corresponding to (57) 
in the form (53), i.e., )),1(exp(),(),exp(),( 21 xxyxxy −−=−= λλλλ  
then the denominator of  the  Green function  of  problem (57)-(58) will  be  (55)    
( the Green function itself of the parametric problem is independent on the choice 
of the system of fundamental particular solutions), where 
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−−== −λλλλ eEQ 6)(,2)( ,12 2 





=−

SOe
λ

λ
δλ R∈   ( S is any natural 

number)that indicates well-poseduess of boundary conditions (58) in the sense of 
definition 2.1. 

Let condition (51) contain only the integrals, i.e. for example, let  
 ∫ ==≡

1

0
,2,1,),()()( idxxyxKyV iii γλ                                                    (59) 

50. Let ])1,0([)( 1CxKi ∈ .0)0()1()1()0( 2121 ≠−≡ KKKKα  
Then we have  

+−=−≡ −∫ )1(1)0(1)exp()()(
1

0
1 iiii KeKdxxxKyV λ

λλ
λ  

;1)0(1)exp()(1
2

1

0

' 





+=−+ ∫ λλ

λ
λ

OKdxxxK ii  

−−=−−≡ −∫ )0(1)1(1))1(exp()()(
1

0
2 iiii KeKdxxxKyV λ

λλ
λ

;1)1(1))1(exp()(1
2

1

0

' 





+=−−− ∫ λλ

λ
λ

OKdxxxK ii
 

therefore from (56) we have  

,)( 2λ
αλ =Q .1)( 2 




=
λ

λ OE  

Consequently under constraints 50 , for parametric problem (57),(59) "boundary 
conditions" (59) are defined by our definition. 

60. Let boundary conditions (46) (and (51)) be well defined. 
Further, let among the non-zero numbers K−656 ,...,, ααα  (from (56)), 

with the greatest index there exist M−6α . 
Remark 2.3. It is approriate to take in condition  20 the number m  and in 

condition 30 the number q  so least at which for )(λQ   (from (56)) it holds  

.1)( 66 MMQ −−= α
λ

λ                                              (60) 

 Using (60), for rather large R , from (55) we have 

66
1

2
1

−−≥∆ MM
λ

αλ)(               (61) 

 Inequality (61) shows that 0)( ≠∆ λ  for δRλ∈ . Therefore, according to 
[1,9,10, 11] and [4], it is hold following 
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Lemma 2.1. Let constraints 10 ,20  and 60 be fulfilled. Then, for δRλ∈  

and  ])1,0([)( Cx ∈ψ  parametric problem (50), (51): 

i) has a unique solution ),,( λxy , 

ii) this solution is an analytic function with respect to δRλ∈ , 

iii) the solution ),,( λxy  is represented by the formula 

∫ +=
1

0
21 ),,,,()(),,(),( γγλδξξψλξλ xdxGxy

                          
(62) 

Using (54) and (61) we get the estimations 

))],1(exp()[exp(),,(1 xxCxG N −−+−≤ λελελλξ  

( ) +−+≤ )[exp(),,,( 2121 xCx N λεγγλγγλδ  

],1,0[,))],1(exp( ∈−−+ ξλε xx δRλ∈                                                  (63) 

 where N is some (integer) number, C is a constant, independent of   ]1,0[, ∈ξx  
δRλ∈   and 21,γγ . 

In [4] the following theorem on inversion formula was proved by the 
fundamental solution ),,( λξxP  from (52). 

Theorem 2.1. Let constraints 10  and 20  be fulfilled. Then for any 
absolutely continuous functions )(xψ  on [0,1] it holds the following inversion 
formula  
 1

0

( ), 1, 0 1,1 ( , , ) ( )
0, 0, 1, 2,...,2 1

2

S

L

x for S x
d P x x d

for S
ψ

λ λ ξ λ ψ ξ
πδ

= < <
− =  = − −  + − 
 

∫ ∫

      

(64) 

where L  is an infinite smooth line in δR , whose rather distant part coincides with 

continuation of the rays ,
4

arg 





 +±= δπλ  moreover in (64) the integral along 

the lines L is understood in the seuse of prinspal value.  
 Taking into account estimations (63), by the method stated in [4], we 

easily prove the following 
Theorem 2.2. Let constraints 10,20, 30 and  60 be fulfilled. Then for any 

functions ])1,0([)( Cx ∈ψ   and arbitrary numbers 1γ   and 2γ  it holds the 
following invertion formula  

1

1
0

( , , ) ( ) 0, 0 1S

L

d G x d xλ λ ξ λ ψ ξ ξ = < <∫ ∫
                    

(65) 
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 1 2( , , , ) 0, 0 1,S

L

x d xλ δ λ γ γ λ = < <∫
                            

(66) 

 where S  -is any integer, L -is from theorem 2.1.  
From Theorems 2.1 and 2.2 we obtain the following 
Theorem 2.3.Let constraints 10,20, 30and 60be fulfilled. Then for any 

absolutely continuous functions  )(xψ  on [0,1]it holds the following inversion 
formula: 
 1

0

( ), 1, 0 1,1 ( , , ) ( )
0, 0, 1, 2,...,2 1

2

S

L

x for S x
d G x d

for S
ψ

λ λ ξ λ ψ ξ ξ
πδ

= < <
− =  = − −  + − 
 

∫ ∫

   

(67) 

 where L is from theorem 2.1.  
 In [4] the following theorem on inversion formula is proved. 
Theorem 2.4. If the function ( )tϕ   is continuous for ,0≥t  then it holds 

the following inversion formula  
 

0
1 ( , ) ( ), ( 0),

2 1
2

L

t d t tλφ λ λ ϕ
πδ

− = >
 − − 
 

∫ 

                   (68) 

L is from theorem 2.1 , ( )2
0

0

( , ) exp ( ) ( )
t

t t dφ λ λ τ ϕ τ τ≡ −∫ . 

3.Solution of the mixed problem. 
 
Let the sought-for continuous control )(xv  be a priori known and 

problem (45)-(47) have the classic solution ).,( txuu ≡  Applying to (45)-(47) the 
finite integral transformation [4] , we get 

Theorem 3.1. Let constraints 10,20, 30 ,40   and 60 be  fulfilled. Then, if 
problem (45)-(47) has a unique solution, this is a unique solution and is 
represented by formula  

1
2

0

1 1( , ) (1 exp( )) ( , , ) ( ) ( , , ) ,
1 L

u x t t G x v d F x t dλ ξ λ ξ ξ λ λ λ
λπ

 
= − + 

−  
∫ ∫  

.0,10 Ttx ≤<<<                                        (69) 

[ ]∫ +−=
1

0
01

2
2010 ),,(~)()exp(),,()),(),,(,,(),,( ξdλtξfξftλλξxGλtψλtψλxδλtxF  

 
 Substituting (69) in finite condition (48) for determining the unknown 

control  we get Fredholm’s second order integral equation ( 0 1x< < ) 
1

2
2

0

1 1( ) (1 exp( )) ( , , ) ( ) ( , , ) , .
1 L

f x T G x v d F x T dλ ξ λ ξ ξ λ λ λ
λπ

 
= − + 

−  
∫ ∫                          (70) 

Because of restriction on the paper’s volume, we don’t give investigation 
of the solution of equation (70). 
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Solving equation (70), we find the unknown control  and according to (67) 
we have  

 
1

0

1 ( , , ) ( ) 0, 0 1.
L

d G x v d xλ ξ λ ξ ξ
λ

= < <∫ ∫                (71) 

 Taking into account (71) in (69), we get ( Ttx ≤<<< 0,10 ) 
1

2

0

1 1( , ) exp( ) ( , , ) ( ) ( , , )
1 L

u x t t G x v d F x t dλ ξ λ ξ ξ λ λ λ
λπ

 
= − + 

−  
∫ ∫                      (72) 

Improsing restraints on rather smooth ness of the functions contained in 30 
and 40 and using the inequality  

( )22exp( ) exp sin 2 ,t C t Lλ λ δ λ≤ − ∈ ,                                                (73) 

 by the method stated in [4], it is easily shown that the function ),,( txu , 
determined by formula (73), is the solution of problem (45)-(48).  

Remark 3.2. In (72) when substituting 2λz =   the obtained image of the 
L  line  from the Laplace straight line and advantage of the differs L   from the 
Laplace straight line is that according to inequality (73), in (72) the integrand factor 

)( 2tλ   for 0>t  , Lλ∈ , ∞→λ ,  decreases exponent tially, and this allows 
easily to justify convergence of the integral in unbounded lines L .  

 
4. Model problem. 

Problem statement. Find the solution of the equation  

 ,0),1,0(),(2

2

Ttxxv
x
u

t
u

<<∈+
∂
∂

=
∂
∂                             (74) 

 with the unknown control )(xv , satisfying the boundary conditions 
,00),(,0),( 10 Tttxutxu xx <<==

==         
                                           (75) 

 initial condition  
 ,10)(),( 10 <<=

=
xxftxu t                                          

 (76) 
 and finite condition  

.10)(),( 2 <<=
=

xxftxu Tt   
                                        (77) 

Let ( ) ( ) ,0)1()0(,]1,0[)(:)({]1,0[ )()(
0 ==∈= kkll CxxC ϕϕϕϕ  for 

}1,...,0 −= lk .   
 All constraints of theorem 3.1 are fulfilled for problem (74) - (77) , and according 
to formula (69), we have 

Theorem 4.1. Let ]),1,0([)( 2
01 Cxf ∈  ]).1,0([)( 4

02 Cxf ∈  Then mixed 
problem(74)-(77) with a control has a unique classical solution  and this solution 
is represented by formula   
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∫ ∑∑
∞

=

∞

=
×+−=

1

0 1
221

1

22 122
kk k

dkfxktktxu
π

ξπξξππ sin)(sin)exp(),(   

.0,10,sin)(sin))exp(1(
1

0

22 Ttxdkvxktk ≤<<<−−× ∫ ξπξξππ            (78) 

×
−−

=∫ )exp(1
sin)( 22

221

0 Tπk
πkξdπξkξv  









−−× ∫ ∫

1

0

1

0
1

22
2 sin)()exp(sin)( ξdπξkξfTπkξdπξkξf .    (79) 

∫∑
∞

=
=

1

01
.sin)(sin2)( ξdπξkξvxπkxv

k

                               (80) 

 
where the sought-for control )(xv  is found by formula (80), its Fourier 

coefficients [3]  by formula (79).  
The finite integral transformation method used here was suggested by us in  

[4] and was successfuley used in   [5-8] and in others. 
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                         Применение метода конечного интегрального                          

                            проеобразования к решению смещанных задач              
                        для параболических уравнений с управлением 

 

Э.А. Гасымов 
gasymov-elmagha@rambler.ru 

 
РЕЗЮМЕ 

 
Одним из методов решения смещанных задач является классический метод 

разделения переменных (метод Фурье). Когда граничных условия смещанной задачи 
нерегульярны, то  вообще говоря, этот  метод неприменимы. В настоящей работе 
применяется метод конечного интегрального преобразования к решению смещанных 
задач для параболических уравнений с управлением и с нерегульярными граничными 
условиями. Получено аналитическое представление решения рассматриваемой 
смещанной задачи. 

Ключевые слова: классическое решение, метод конечного иетегрального 
преобразования, уравнения с управлением, нерегульярное граничное условие  

215 
 

mailto:gasymov-elmagha@rambler.ru

	1.Statement of the problem
	2.Parametric problem.
	3.Solution of the mixed problem.
	4. Model problem.

